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Protein-Ligand Complexes
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Computational methods to calculate binding affinity in protein-ligand interaction are of
immense interest because of obvious practical applications in structure-based drug design.
Scoring functions attempt to calculate the variation in binding affinity of ligands-inhibitors
bound to protein targets at various levels of theory. In this study we use semiempirical quantum
mechanics to design a scoring function that can calculate the electrostatic interactions and
solvation free energy expected during complexation. This physically based approach has the
ability to capture binding affinity trends in a diverse range of protein-ligand complexes. We
also show the predictive power of this scoring function within protein targets and its ability to
score ligand poses docked to a protein target. We also demonstrate the ability of this scoring
function to discriminate between native and decoy poses and highlight the crucial role played
by electrostatic interactions in molecular recognition. Finally we compare the performance of
our scoring function with other available scoring functions in the literature.

Introduction

The chemistry and physics associated with protein-
ligand interaction has been an area of active research
with widespread implications for structure-based design
of small-molecule inhibitors. There is relentless pressure
on the pharmaceutical industry to reduce costs because
of the extreme difficulty in bringing a compound to the
market as a drug.1 In silico virtual screening has been
a very attractive and cost-effective alternative to ex-
perimental screening because of its ability to screen a
large number and broad range of compounds.2,3 In this
process a database of compounds are docked to a
receptor binding site and then a docked “pose” is scored
on the basis of a potential function that describes the
relationship between the structure of the complex and
the free energy of binding. This has been a very popular
procedure to identify possible lead compounds. In some
cases docking algorithms have been reasonably success-
ful in predicting binding modes; however, scoring the
poses to predict the binding affinity has proved to be
more challenging.4-6 The potential functions used in
docking and scoring are referred to as “scoring func-
tions”. Present day scoring schemes are too simplistic
and sacrifice quality for speed, or they are too detailed
and time-consuming for practical applications.7,8 More-
over, the time-consuming methods that use molecular
simulation,9 by their very nature, have made large-scale
validation a challenge. Thus, despite all the recent
developments in this area, a physically satisfying model
that is robust enough to satisfactorily evaluate the
binding of ligands to proteins accurately in a reasonable
amount of time has proven to be elusive. In general, the

scoring functions that have been used can be divided
into three categories: physical-chemical, empirical, and
knowledge based potentials. Recently we have reviewed
binding free energy calculation protocols and different
scoring functions in greater detail.10

Quantum mechanics (QM), though not new to the
field of molecular interaction, has till now been used
only to study smaller chemical and biochemical systems
because of the exorbitant computational costs associated
with this approach. In recent work from our group we
have reported the development of a linear scaling
methodology that uses the divide and conquer (D&C)
approach for solving large molecular systems with
QM.11-13 This method has been implemented in our
computer program DivCon14 and uses the semiempirical
Hamiltonians (AM1,15 PM3,16 MNDO/d,17,18 or PM3-
PDDG19) to solve the Schrödinger equation for large
biomolecular systems. The use of QM also allows us to
move away from force field based methods especially
for evaluating electrostatic interactions. Monopole-
monopole interactions calculated using force field based
methods represent a significant approximation to elec-
trostatic interaction and are generally designed to treat
QM effects in an average manner. QM effects, like
polarization and charge transfer, are either embedded
into the monopolar approximation or added via extra
parametrized terms.

Energy decomposition studies that we have carried
out using semiempirical linear scaling calculations have
shown that solvent induces a significant polarization on
the protein electron density that can enhance or reduce
the interaction between a ligand and protein-based
receptor.20 Perez and Ortiz have used linear discrimi-
nant analysis and concluded that a sophisticated treat-
ment of desolvation and hydrogen bond interactions is
important in scoring functions.21 Charge transfer effects
are especially pronounced in metalloenzyme-ligand
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complexes. We have shown such effects to be significant
in previous studies.22 Hence, predicting binding affini-
ties using classical force field based methods faces many
hurdles.

Recently, we introduced a QM-based scoring function
to predict the free energy of binding in protein-ligand
interaction and others have also reported application
of semiempirical QM methods to protein-ligand inter-
action.22-24 Here, we report large-scale application of
our QM-based method for binding affinity prediction.
We validate our calculated binding affinities by compar-
ing them to experimental binding free energies to
measure the success of our method. We take a physically
based approach wherein we account for all aspects of
the binding phenomenon at various levels of approxima-
tion. Binding free energy in solution is calculated using
the thermodynamic cycle shown in Figure 1. The
electrostatic interactions between the ligand and the
protein and between the solvent and the protein-ligand
complex are treated at the highest levels of theory using
semiempirical QM. Other interactions such as short-
range and long-range nonpolar interactions are calcu-
lated using MM methods. We also dwell on different
components of the scoring function and discuss their
ability to predict binding free energy. In a related
analysis we test the ability of the scoring function to
discriminate between native and decoy binding modes
or “poses”.

Methods

Preparation of the Database. We compiled a
database of 165 noncovalently bound protein-ligand
complexes with an experimental binding affinity avail-
able in the literature.25-35 This consisted of inhibition
constants (Ki), dissociation constants (Kd), IC50 values,
and calorimetric binding free energies. We converted all
reported binding affinities to a free energy of binding
reported in kcal/mol. All complexes along with their
PDBIDs (PDB codes) and the binding free energies in
this study are listed in Table SI of Supporting Informa-
tion. In addition to preparing our own set we also
exploited other publicly available sets.28,36 For our
validation studies we used the set prepared by Wang
et al., which has 100 protein-ligand complexes.28 This

set is unique in its comparison of scoring functions
available for docking. It compares the quality of binding
affinity prediction for 11 available scoring functions that
have been implemented in various commercial software
packages such as SYBYL37 and Cerius2.38 However,
after a careful visual inspection of the 100 available
structures, we chose only 57 of the 100 protein-ligand
complexes from this set.

We rejected protein-ligand complexes from this set
based on the following criteria: (1) Metal-containing
systems were excluded because metal atoms were not
included in the scoring by Wang et. al., and hence,
comparison with QMScore (which requires metal atoms
to be included if they are in the active site) was not
justified. (2) All the structures were visually compared
with the original PDB entries, and if the ligand-
inhibitor had missing functional groups, then it was
excluded from the set. (3) In some cases there was
ambiguity in the reported binding constants. For ex-
ample, for tetrapeptide inhibitors bound to proteinase-A
(PDB codes 4sga and 5sga), the Michaelis constant, KM,
was used as a measure of binding affinity for these
inhibitors.39 We excluded such complexes because we
were interested only in thermodynamic constants such
as Kd and Ki to calculate binding affinity from the
structure and not the kinetic constants such as KM.
Using these criteria, we were left with 57 protein-
ligand complexes from the set of 100.

Structure Preparation. Heteroatoms such as met-
als and ions not in the active site and water molecules
were excluded from the PDB file. Protein and ligand
atoms were extracted from each PDB file, and protons
were added to all heavy atoms for the leap module of
the AMBER 6.0 suite of programs.40 Proton locations
were assigned on the basis of standard geometries, and
ionizable residues were protonated assuming physi-
ological pH. The N and C termini were charged as in
physiological pH conditions. For the small molecule, a
combination of BABEL,41 PRODRG,42 and an in-house
program was used to add protons to the heavy atoms
in the ligands. The small molecule was then visually
inspected, and if there was any conflict or ambiguity,
then proton assignment was modified by hand. In the

Figure 1. Thermodynamic cycle used to calculate the free energy of binding in solution between the protein and ligand during
complexation. ∆Gsolv

P is the solvation free energy of protein, ∆Gsolv
L is the solvation free energy of the ligand, and ∆Gsolv

PL is the
solvation free energy of the protein-ligand complex. ∆Ggas

bind is the free energy of binding in the gas phase, and ∆Gsol
bind is the free

energy of binding in solution.
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case of Wang et al.’s data set, we visually inspected the
preassigned protonation state of the ligand.

Atom Typing and Minimization. All protein and
ligand atoms were assigned atom types for calculation
of internal and nonbonded interaction energies and also
for geometry optimization using a classical force field.
The heavy atoms in the proteins were assigned atom
types based on the AMBER 96 force field. For the ligand,
the atom types were assigned with the Antechamber
(which uses the generalized amber force field GAFF)
module of the AMBER 7.0 suite of programs.40 For
geometry optimization of the protein-ligand complexes,
we followed the following protocol. The heavy atoms
were fixed at their experimentally observed positions
by placing a high restraint of 5000 kcal mol-1 Å-1, and
geometries of the modeled protons were optimized using
the AMBER 6.0 computer program. Five-hundred cycles
of steepest decent were followed by 1000 cycles of
conjugate gradient energy minimization. The complex
was then taken apart, and hydrogen atom positions
were reoptimized in the protein and ligand separately.
However, X-ray crystal structures are far from being
error-free and some of the structures have less than
optimal geometric characteristics (e.g., unusually long
or short bond lengths, close contacts, etc.).43 Hence, in
another protocol we performed full geometry optimiza-
tion without any restraints on the heavy atoms. Five-
hundred cycles of steepest decent was followed by 1000
cycles of conjugate gradient energy minimization. The
protein and ligand were then taken apart and reopti-
mized separately using the same protocol. Quantum
mechanics calculations were performed on the protein,
the ligand, and the complex using both protocols.

Calculation of Binding Affnity. A thermodynamic
cycle as shown in Figure 1 was used to calculate the
free energy of binding of the ligand to the protein. This
cycle can be summarized in the following set of equa-
tions:

The free energy of complex formation in solution was
decomposed into gas-phase interaction energy ∆Gb

g and
a solvation free energy ∆Gsolv

PL - ∆Gsolv
P - ∆Gsolv

L of
complexation. The gas-phase interaction energy is a sum
of enthalpic and entropic contributions. The enthalpic
contribution was calculated as a sum of electrostatic and
nonpolar interaction energies. The gas-phase electro-
static interaction energy was calculated using our
semiempirical divide and conquer (D&C) quantum
mechanics program DivCon14 at the AM115 or PM316

level of theory. DivCon calculates the heat of formation
as

where Eelec is the electronic energy and Ecore-core is the
core-core repulsion calculated from the solute wave
function. The sum over the heats of formation of all
atoms in the system is added to the electronic energy
and core-core repulsion to calculate the heat of forma-
tion of the system. The semiempirical quantum theory

used to calculate the energy terms from the solute wave
function15,17,44 and details of the linear scaling tech-
nology11-13 have been discussed in detail elsewhere.
Briefly, the D&C approach involves division of a large
biomolecule such as a protein-ligand complex into
smaller subsystems and the electronic energy is ob-
tained by solving a set of localized Roothaan-Hall
equations,

for each subsystem. Here, R is a subsystem, FR is the
Fock matrix, CR contains the molecular orbital (MO)
coefficients, and ER is the diagonal matrix of eigen-
values. The global Fock matrix F and the density matrix
P are assembled from the subsystem matrices by
variational minimization of the electronic energy using
a self-consistent field (SCF) method. The electronic
energy can subsequently be calculated as

where µ and ν are basis functions of the macromolecular
system and H is the one-electron matrix.

For the protein-ligand interaction we calculated the
heat of interaction (∆HI) between the protein and ligand
as

where ∆Hf
PL is the heat of formation of the protein-

ligand complex, ∆Hf
P is the heat of formation of the

protein, and ∆Hf
L is the heat of formation of the ligand.

We examined both the heat of formation and the
electronic energy as representing the overall electro-
static energy of the system. This is further discussed
in the Results and Discussion.

It is well-known that dispersive interactions are due
to electron correlation that arise from favorable instan-
taneous multipole/induced multipole charge fluctua-
tion.45 These interactions are not captured by uncorre-
lated QM methods such as ab initio Hatree-Fock
molecular orbital theory that describes each electron in
the average field of the other electrons, or density
functional theory (DFT) that uses local approximations
for the density.46,47 Often, large basis sets and higher
levels of theory such as second-order perturbation (MP2)
theory is invoked to describe dispersion interactions in
molecular systems. However, these systems tend to be
relatively small because of the prohibitive computa-
tional cost. Hence, to account for dispersion interactions
in protein-ligand interaction, we used the attractive/
dispersive (1/R6) part of the classical Lennard-Jones
interaction potential. This was calculated using the
AMBER 96 force field48 for nonbonded atoms in the
protein-ligand complex. The enthalpic component of the
gas-phase interaction energy was thus calculated as a
sum of heat of interaction and the attractive part of the
Lennard-Jones term.

Entropy plays an important role in binding. When
protein and ligand form a complex, there is loss of 3
degrees of rotational and translational freedom, which
makes it entropically unfavorable.10,49,50 The entropic

∆Gbind
sol ) ∆Gb

g + ∆Gsolv
PL - ∆Gsolv

P -∆Gsolv
L

∆Gb
g ) ∆Hb

g - T∆Sb
g (1)

∆Hf ) Eelec + Ecore-core + ∑
atoms

∆Hf (2)

FRCR ) CRER (3)

Eelec )
1

2
∑
µ)1

N

∑
ν)1

N

(Hµν + Fµν)Pµν (4)

∆HI ) ∆Hf
PL - ∆Hf

P - ∆Hf
L (5)
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contribution to binding can be described by a confor-
mational and solvent component.51 The number of
rotatable bonds in the ligand has been a popular
measure for conformational entropy used in a host of
scoring functions.25,52-54 In the process of binding the
exposed amino acid side chains in the active site of the
protein also lose conformational entropy when they are
locked into a particular conformation via interactions
with the ligand. The number of rotatable bonds in the
protein side chains that interact with the ligand was
added to the number of rotatable bonds present in the
ligand. To enumerate the rotatable bonds in the protein,
amino acid residues that were solvent-exposed in the
unbound state but buried in the complex were tabu-
lated. Then freely rotatable bonds were assigned on the
basis of the number of rotamers of these amino acid
residues. A conformational penalty of 1 kcal/mol was
used for each rotatable bond.

The solvent entropy Ssol is the entropy gained by
water molecules on being displaced from the active site
by the ligand during binding. This can also be described
as the hydrophobic effect in the context of binding.
Structure-based thermodynamic calculations have shown
the dependence of solvent entropy on the changes in
solvent-exposed surface area during binding.51 Other
scoring functions such as ChemScore and DrugScore
also use a surface area term to account for such effects.54

We estimated solvent entropy based on the nonpolar
and polar surface area burial during binding. A solvent
probe radius of 1.4 Å was used to calculate the solvent
accessible surface area (SASA).55 The solvent entropy
is calculated from the buried surface area as a result of
complexation. Solvation free energy plays a very im-
portant role in binding.50,52,56-58 From the perspective
of binding it can be described as the desolvation of the
ligand and the active site of the protein. The solvation
free energy can be decomposed into electrostatic and
nonpolar contributions. The electrostatic part of the
solvation free energy was calculated using our self-
consistent reaction field (SCRF) methodology, in which
the polarization of the solute in the presence of a solvent
reaction field is calculated with QM. The details of the
method have been discussed elsewhere and have been
recently reviewed as well.59,60 Use of this method
obviates an internal dielectric constant to calculate the
solvation free energy because the QM solute polarization
due to the solvent reaction field in effect describes the
dielectric relaxation process.59,61,62 By calculating the
solvation free energy of the protein, ligand, and the
complex, we evaluate the desolvation cost of the ligand
and the protein active site during binding.

Molecular Recognition Model. In this study we
also discuss the performance of the molecular recogni-
tion model (MRM), which is an intermolecular interac-
tion based model for binding affinity prediction. The
molecular recognition model has been previously de-
scribed in the literature for understanding mechanisms
of molecular recognition by computer simulations of
protein-ligand interactions.63 We adapted MRM with
a few significant changes and implemented it in our
computer program DivCon. The ligand-protein interac-
tion energy was calculated as

where Eij
inter is the interaction energy between atoms i

and j calculated as a sum of the dispersion-repulsion
interaction energy Eij

dr, the electrostatic interaction
energy Eij

es, and the pairwise solvation energy Eij
sol.

The dispersion-repulsion interaction was calcu-
lated using a soft-core 12-6 Lennard-Jones (LJ) potential
as described by Verkhivker et. al., which is of the
form

where Rij is the distance between atoms i and j and
where the δLJ is the soft-core term for the LJ potential
set at 2.75 Å. Aij and Bij were calculated using standard
geometric combination rules. A reduced set of atom
types were perceived from their geometry and con-
nectivity within the molecule, and parameters were
assigned automatically on the basis of the atom type
by the computer program. The electrostatic interaction
was calculated from a soft-core Columbic potential of
the form

where qi and qj were solvated CM2 charges on atoms i
and j calculated using an AM1 or PM3 Hamiltonian and
the PB/SCRF method. The soft-core term δES was set
at 1.75 Å, and D was the dielectric constant set at 2.0.
The pairwise solvation energy was calculated consider-
ing the transfer of an atom from the solvent to the active
site of the protein. As described by Verkhivker et. al.,
the affinity of an atom for the solvent is proportional
to the square of its partial atomic charge plus a
constant:

where Si is the solvent affinity and qi is the charge on
atom i. R and â are constants set at R ) 0.25 kcal/mol
and â ) -0.005 kcal/mol. The volume of solvent dis-
placed from atom i by atom j, Xj, is a function of the
fragmental volume fj of atom j and the distance of atom
j from atom i. We also used a Gaussian weighting of
the distance:

reff is the distance between the two atoms, which is used
in the soft-core Coulombic term, and σ is a constant set
at 3.5 Å. The solvation free energy in the protein-ligand
interaction was thus calculated in a pairwise additive
fashion using the expression

Regression Analysis. All the calculated terms were
fit to experimental free energies of binding for the
complexes in the data set using multiple linear regres-
sion (MLR). MLR seeks to minimize the error between

ELJ-soft )
Aij

(Rij
6 + δLJ

6)2
-

Bij

(Rij
6 + δLJ

6)2
(7)

Eij
es )

qiqj

4πε0D(Rij
6 + δES

6)1/3
(8)

Si ) Rqi
2 + â (9)

Xj )
fi exp[-

reff
2

2σ2]
σ3

(10)

Eij
sol ) SiXj + SjXi (11)

Eij
inter ) Eij

dr + Eij
es + Eij

sol (6)
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a dependent variable and independent variables using
the ordinary least squares (OLS) method and has been
used to compute weights or coefficients of various energy
terms in scoring functions.54,64-66 MLR thus allows us
to assess the contribution of each of the independent
variables to binding by calculating their weights and
the predictive ability of the model by calculating the
square of the correlation coefficient (R2) and standard
deviation. The following master equation was used to
calculate binding free energy:

The dependent variable or the experimental binding
affinity (∆Gexp) was fit to six independent variables,
namely, ∆HI (heat of interaction), ∆LJ6 (the dispersive
or 1/R6 part of Lennard-Jones interaction), ∆∆Gsolv
(solvation/desolvation free energy due to complexation),
∆Ssol (solvent entropy), and number of freely rotatable
bonds (∆Sconf). Similarly, for MRM the dispersion-
repulsion interaction (Edr), the electrostatic interaction
(Eelec), and the solvation (Esolv) interaction between the
ligand and the protein were fit to the experimental
binding free energy. The coefficients estimated by the
MLR were used to calculate the binding free energy
(∆Gbind) and square of the correlation coefficient (R2).
Henceforth, the score calculated for each protein-ligand
complex from regression analysis is referred to as
QMScore. We note that in our previous work we have
described the TotalScore for predicting binding affin-
ity.22 To make the distinction clear again, TotalScore is
simply the raw sum of the individual contributions used
in eq 12 without any of the weights calculated by linear
or nonlinear methods. However, when comparing QM-
Score and TotalScore we fit TotalScore to experimental
binding free energy.

Predicting Binding Mode. We used the set pre-
pared by Wang et al. for testing our method’s ability to
discriminate between native and decoy binding modes.
This set comprises 100 protein-ligand complexes span-
ning different protein families. For each of the protein-
ligand complex, Wang et. al. generated 100 decoy poses
using AUTODOCK. We obtained these poses and scores
for all 100 protein-ligand complexes. From this set we
chose 20 protein-ligand complexes and 50 decoy poses
for each target to test our scoring function. These 20
protein-ligand complexes are listed in Table 2. The
native pose decoy complexes were prepared by perform-
ing geometry optimization on the added hydrogen atom
positions as described in the protocol above. The native
poses and the decoy poses were scored using TotalScore,
and the results were then analyzed.

Calculating Proton Affinity. The inhibitors that
bind to HIV-1 protease are known to have either one or
two hydroxyl groups. We have used our calculations to
assign the protonation states of the aspartyl dyad in the
presence of the inhibitors of HIV-1 protease. Four
protonation states were considered where the proton
was bonded to either OD1 or OD2 oxygen of the catalytic
aspartates ASP25 and ASP25′. For protonation state A,
the OD2 oxygen of ASP 25 was protonated, and for state
B, the OD1 oxygen of ASP 25 was protonated. Similarly,
for protonation state C, the OD2 oxygen of ASP 25′ was
protonated, and for protonation state D, the OD1 oxygen

of ASP 25′ was protonated (Table SIV in Supporting
Information). The proton affinity for each of the dyads
in 26 complexes was calculated as follows:

where

PL-H is the protonated form and PL is the unprotonated
form of the protein-ligand complex. ∆HP is the heat of
protonation/deprotonation, ∆LJ6 is the dispersive energy
due to protonation/deprotonation, and ∆∆Gsolv is the
solvation cost of protonation/deprotonation. All these
terms were calculated in the presence of the ligand. The
gas-phase heat of protonation (∆HP) was calculated at
the AM1 level of semiempirical theory, and solvation
correction was applied using our PB/SCRF method with
a CM2 charge model. The nonpolar interaction energy
was estimated from the dispersive part of the Lennard-
Jones interaction using AMBER 96 force field. In Table
SIV of Supporting Information, we have listed the
proton affinity of the aspartates 25 and 25′ in the
presence of the inhibitor for 26 inhibitors bound to HIV
protease. The individual contributions to proton affinity
have not been listed in the table, but the differences in
proton affinity arise from the electrostatic and solvation
components of the interaction energy and not from the
dispersive/attractive interaction energy.

Results and Discussion
Binding Affinity Prediction. For predicting bind-

ing affinity we used a diverse set of 165 complexes
containing different protein families including aspartic
proteases, serine proteases, sugar binding proteins,
amino acid binding proteins, and protein kinases. Figure
2 shows calculated ∆Gbind versus experimental ∆Gbind
for the 165 complexes. This scoring function is able to
capture the general trend with respect to variation in
binding affinity for a diverse set of protein-ligand
complexes from the PDB. The square of the correlation
coefficient between the TotalScore (TotalScore is the
sum of all parts of the scoring function; see Methods)
and the calculated binding affinity is 0.48 with a
standard deviation of 2.11 kcal/mol. By using MLR to
fit different parts of TotalScore (yielding QMScore), we
obtained the square of the correlation coefficient R2

between calculated and experimental ∆Gbind of 0.55. The
standard deviation between the calculated and experi-
mental ∆Gbind was 1.98 kcal/mol.

Since the X-ray crystal structures used had a wide
range of resolution, we also studied the relationship
between the quality of prediction and the resolution,
internal energy of bonds, angles, and nonbonded repul-
sive interactions calculated using the AMBER force
field. We find that the quality of prediction (R2) has a
well-defined relationship with bond energy, angle en-
ergy, and the repulsive part of the nonbonded interac-
tions (which represents steric clashes in the structure).
The R2 between TotalScore and experimental ∆Gbind
decreases with an increase in bond energy and angle
energy that represent deviations from standard bond
lengths and angles in the crystal structure (Figure 3).
Similar results were obtained for the repulsive part of
the nonbonded interaction (data not shown). These

∆Gbind ) ∆HI +∆LJ6 + ∆∆Gsolv + ∆Ssolv + ∆Sconf
(12)

proton affnity (PA) ) ∆EPL-H - ∆EPL (13)

∆E ) ∆HP + ∆LJ6 + ∆∆Gsolv (14)
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results imply that the scoring function is very sensitive
to geometries and its predictive ability depends on the
quality of the structures used. In this regard our scoring
function is different from other empirical or knowledge-
based potentials because these potentials are not neces-
sarily penalized by structures of poorer quality.

Our data set consisted of diverse protein targets and
families, and we assessed the performance of our scoring
function within these protein families. For a set of 29
HIV-1 protease complexes, we obtained a square of the
correlation coefficient R2 of 0.24. The R2 increases to
0.32 without one outlier (TotalScore in Table 1a). When
different contributions to TotalScore is fit to the experi-
mental ∆Gbind (QMScore in Table 1a), the R2 for the set
is 0.36 with one outlier and is 0.43 without one outlier.
The standard deviation between experimental and
calculated ∆Gbind is 1.51 kcal/mol for this set and 1.38
kcal/mol without one outlier. HIV-1 proteases are
enzymes that recognize peptides and are capable of
cleaving peptide bonds with sequence selectivity.67 The
enzyme binding sites are complementary to substrate
residues. The free energy of binding between these
proteases and their natural substrates have a signifi-
cant entropic component because the substrates are
peptides and have conformational degrees of freedom
that are lost because of binding. Estimation of this part
of the free energy is based on an empirical count of
rotatable bonds and is a poorly estimated quantity in
our scoring scheme that affects this set. Also, the active
site in the apo protein is thought to be more open
because of the large-scale motion of the “flap” regions
in the protease not taken into consideration in this
approach.68 These approximations could explain the
modest R2 values for this set. Indeed, other scoring
functions such as the knowledge-based potential (KBP)
SMOG53 had poor agreement with experimental binding
affinities for aspartic proteases (R2 ) 0.03 for SMOG96
and R2 ) 0.38 for SMOG2001) compared to other protein
families. Another KBP PMFScore was used by Muegge
and Martin69 to calculate binding affinity not from X-ray
crystal structures but from inhibitor poses minimized

in the active site of the crystal structure of L-689,502
inhibited HIV-1 protease taken from Holloway and co-
workers.70 The empirical scoring function VALIDATE
performed better on aspartic proteases (R2 ) 0.74), but
it fit 29 variables or descriptors to the experimental
binding affinity.65 Overall, the HIV-1 protease set, while
very well characterized structurally, still poses a sig-
nificant challenge to modeling its binding affinity.

The catalytic dyad of aspartic acid residues in aspartic
proteases plays a crucial role in peptide hydrolysis using
a general acid catalysis mechanism. It has been con-
cluded that one of the aspartates is protonated while
the other is unprotonated for the enzyme to be catalyti-
cally competent.67 The proton titration behavior of the
aspartyl dyads have been studied experimentally and
shown to yield two distinct pKa values.71 Since the two
aspartyl groups are chemically equivalent, it is not
possible to associate the pKa value with a particular
aspartate residue in the enzyme. Atomic resolution
information from X-ray crystallography cannot resolve
the hydrogen positions at low resolution. Recently a
method for computational titration of HIV-1 protease
has been reported72 and our linear scaling QM method
has also been used by Rajamani and Reynolds to model
the protonation state of catalytic aspartates in â-secre-
tase (BACE).73

We calculated proton affinity in all four possible
protonation states for 26 inhibitors bound to HIV-1
protease (see Methods and Table SIV of Supporting
Information). The general trends for proton affinity in
the ligands agree with hydrogen-bonding patterns be-
tween the inhibitors and the enzyme. For inhibitors with
a single hydroxyl group interacting with the catalytic
dyad such as A76889, A78791, AQ148, GR126045,
hydroxyethylene, L-700417, SB203386, and SB206343,
the protonation state with an optimal hydrogen bond
distance between the heavy atoms (2.8-3.2Å) has the
greatest proton affinity. For inhibitors with two hy-
droxyl groups (diols) the results are less intuitive.
However, for inhibitors such as DMP323, DMP450,
SD146, A77003, and XK263, proton affinity is greatest

Figure 2. Calculated vs experimental ∆G of binding for 165 protein-ligand complexes from the PDB. ([) Data points are calculated
without fitting components of the score to experimental ∆G of binding (R2 ) 0.49). (O) Data points are calculated by fitting
components of the score to experimental ∆G of binding (R2 ) 0.55).
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for the state with at least one optimal hydrogen-bonding
interaction. These calculations in some cases also show
a distinct preference for one aspartate over the other
in the catalytic dyad. This is evident for inhibitors such
as A74704, A76889, AQ148, DMP323, GR126045,
L-700417, and U75875. If acidic residues in other
proteins have distinct pKa values implying the presence
of a titratable proton on either of the residues, then one
can ascertain the protonation state by using this
method. Inhibitors designed with a more accurate
protonation state are likely to be more effective.

Choosing the protonation state accurately can also
lead to a better performance of scoring functions. In a
test of this notion, we chose the receptor protonation
state with the greatest proton affinity for calculating
the binding free energy between 26 inhibitors with a
hydroxyl or diol group interacting with the catalytic
aspartate dyad of HIV-1 protease. For three complexes
in which inhibitors did not have a hydroxyl group or
diol group present, we calculated the interaction, ignor-
ing the protonation state as done previously. TotalScore
and QMScore were calculated by fitting various contri-
butions to the experimental binding affinity. It was
found that, barring VX478, the binding affinity calcu-
lated using the QMScore in the latter manner gave a
better agreement with experimental binding affinities.
We obtained an R2 of 0.29 for TotalScore and 0.46 for
QMScore when different contributions were fit to ex-

perimental data. The standard deviation in this case
was 1.31 kcal/mol, which was lower than the 1.51 kcal/
mol for the set in which the protonation states were
ignored in QMScore calculations.

For the serine protease family we obtain good cor-
relation with experimental ∆Gbind. The serine protease
set had 19 protein-ligand complexes from the PDB that
included thrombin and trypsin inhibitors. For this set
we obtained a R2 of 0.69 for TotalScore. For QMScore,
we obtain an R2 of 0.78 and a standard deviation of 1.5
kcal/mol (Table 1a). Without one outlier we obtain R2

of 0.69 and 0.8 for TotalScore and QMScore, respec-
tively, and a standard deviation of 1.38 kcal/mol. For
this set we perform comparably to other scoring func-
tions in the literature.26,74 For 11 protein kinase inhibi-
tors we achieve an R2 value of 0.47 and 0.67 for
TotalScore and QMScore, respectively. Without one
outlier the R2 increases to 0.58 and 0.95 for TotalScore
and QMScore with a standard deviation of 0.37 kcal/
mol. The dramatic increase in R2 without one outlier
for QMScore is due to overfitting because the number
of observations is not large compared to the number of
independent variables in the QMScore master equation.

For 40 metalloenzyme complexes we obtain good
agreement with the experimental ∆Gbind with an R2 of
0.55 and 0.58 for TotalScore and QMScore, respectively.
The standard deviation for this set is 1.67 kcal/mol.
Without one outlier, however, TotalScore and QMScore
have R2 of 0.68 and 0.7, respectively, with a standard
deviation of 1.43 kcal/mol. This set includes human
carbonic anhydrase, carboxypeptidase, and matrix
metalloproteases inhibitors and highlights the strength
of our scoring function and its ability to capture the
binding free energy variations in metal-containing
protein-ligand systems. This is unique to our scoring
function because other empirical, KBPs, and force field
based methods tend to ignore the interaction of the
metal with its environment even though significant
electrostatic effects between the ligand and the metal
are likely. QMScore’s performance in predicting binding
affinity for different protein families has been tabulated
in Table 1a. We achieve good agreement in all cases with
an average standard deviation between calculated and
experimental ∆Gbind of less than 2.0 kcal/mol.

This is an encouraging result because we are comput-
ing binding free energies of protein-ligand complexes
from a single X-ray crystallographic structure in which
only the positions of the protons have been optimized
using a force field. We assume that the X-ray crystal
structure of the ligand is the global minimum energy
conformation and is conformationally and energetically
distant from the nearest maximum on the binding free
energy surface. However, it is quite possible that the
affinity of a ligand for a protein target depends on an
ensemble of conformationally close ligand poses that
contribute to the free energy of binding.75 To assess the
dependence of the interaction energy on the conforma-
tion of the ligand, we have calculated the ∆HI, disper-
sion interaction, and solvation free energy of poses close
to the X-ray crystal structure.

In Table 1b we have listed the average gas-phase
interaction energy (∆HI), the dispersive part of the
Lennard-Jones interaction, and the solvation free en-
ergy (∆∆Gsolv) for five protein-ligand complexes with

Figure 3. (a) Dependence of the square of the correlation
coefficient R2 (∆Gcalc vs ∆Gexpt) on bond length distortion
energy. The number of protein-ligand complexes in each bin
is labeled on the bars. (b) Dependence of the square of the
correlation coefficient R2 (∆Gcalc vs ∆Gexpt) on bond angle
distortion energy.
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four poses closest to the X-ray crystal structure pose.
The poses were generated using AUTODOCK by Wang
et. al. and chosen on the basis of root-mean-squared
deviation (rmsd) from the native. The trends in Table
1b underline the challenges in the prediction of binding
free energy using physically based energy functions. The
standard deviation for ∆HI for all complexes is in the
tens of kcal/mol, whereas the standard deviation for
∆∆Gsolv is generally lower in magnitude. The sensitivity
of these interaction energies to ligand geometries is also
demonstrated in the table. Even for a tighter distribu-
tion of near-native structures such as the trypsin-
benzamidine complex (average rmsd of 0.6; standard
deviation (SD) of 0.46), the variation in calculation of
∆HI is ∼8 kcal/mol. For a more relaxed distribution of
binding modes, such as in the penicillopepsin-pepstatin
analogue complex (av rmsd of 2.38; SD of 1.93), the
variation in calculation of ∆HI is as high as 26 kcal/
mol. The magnitude of the variation in estimation of
different quantities is much greater than the range of
experimental binding free energy. Despite these chal-
lenges, this first-generation scoring function can predict
binding free energy trends in protein-ligand interaction
with reasonable accuracy.

Binding Affinity Prediction from Docked Poses.
In the absence of atomic structures determined by either
X-ray crystallography or NMR, QMScore can be used
to determine the binding affinity from ligand poses
docked to protein targets. The poses can be obtained
using any one of the standard docking programs (e.g.,
DOCK,76 Autodock,77 ICM,78 etc.). We demonstrate this
by calculating the QMScore for two sets of protein-
ligand complexes. The first set consisted of inhibitors
that were modeled and minimized by Holloway et al.,
in the active site of the HIV-1 protease bound to the

inhibitor L-689,502 using the Merck molecular mechan-
ics force field (MMFF).79 The catalytic water 407 in the
“flap” region of the protease was included in the
minimization of the inhibitors in the active site of the
protease.70 We obtained the coordinates of the protease
and the inhibitors from the authors and performed
QMScore calculations. The pKi was calculated using the
QMScore scoring model by fitting the individual com-
ponents to the experimental pKi. For the 33 complexes
we achieve good correlation with the experimental pKi
with an R2 of 0.58. The standard deviation between
calculated and experimental pKi is 0.94 pKi units.
Without one outlier, the R2 increases 0.63 with an
average standard deviation of 0.88 pKi units. Although
the overall R2 for the 33 inhibitors was modest, the
standard deviation was less than 1 pKi. Moreover, these
poses have been minimized in the active site using
MMFF and are not X-ray crystal structures.

In another set we used QMScore to calculate pIC50
values for a set of 60 inhibitors docked to the matrix
metalloprotease stromelysin (MMP-3). The poses were
docked by Jacobbson et. al. into the active site of MMP3
(PDB code: 1HY7) using ICM. The authors also scored
the poses with ICM and PMF.36 We calculated the pIC50
values of these inhibitors using our QMScore model for
this set of 60 docked inhibitors and obtained an R2 of
0.6 (Figure 4b). The standard deviation of prediction for
this set was 0.47 pIC50 units. In Figure 5 we show the
diversity of this set of 60 inhibitors and list the
experimental and calculated pIC50 values. The range of
pIC50 values for this set of diverse MMP-3 inhibitors is
∼3 pIC50 units, which makes this result quite significant
because it highlights the resolution of the method.
Jacobbson et. al. have scored these complexes with PMF
and a showed a weak correlation with an R2 of 0.27,

Table 1.

(a) Performance of QMScore within Protein Families Based on X-ray Crystal Structuresa

protein family
no. of

complexes
R2

TotalScore
R2

QMScore
SD

(kcal/mol)
∆Gbind range

(kcal/mol)

HIV-1 protease 29 0.24 0.36 1.51 6.7
HIV-1 protease without 1 outlier 28 0.32 0.43 1.38 6.7
HIV-1 protease (best PA)b 29 0.29 0.46 1.31 6.7
serine protease 20 0.69 0.78 1.50 10
serine protease without 1 outlier 19 0.69 0.80 1.38 10
protein kinase 11 0.47 0.67 1.07 5
protein kinase without 1 outlier 10 0.58 0.95 0.37 5
metalloproteins 40 0.55 0.58 1.67 14
metalloproteins without 1 outlier 39 0.68 0.70 1.43 14

(b) Distribution of the Average Interaction Energy and Its Contributions for Native and Near-Native Poses
for Five Protein-Ligand Complexes Spanning 10 kcal/mol of Binding Free Energyc

protein-ligand complex
∆Gbind

(kcal/mol)
av rmsd

(Å)
av ∆HI

(kcal/mol)
av ∆LJ6

(kcal/mol)
av ∆∆Gsolv
(kcal/mol)

trypsin benzamidine -2.51 0.60 -163.22 -51.70 179.83
(0.46) (8.03) (3.81) (3.10)

plasminogen kringle-aminocaproic acid -5.97 1.64 -126.57 -46.10 165.68
(1.22) (16.38) (4.82) (11.85)

56Lck Sh2 domain-inhibitor -6.05 2.38 -321.83 -124.46 424.78
(1.83) (26.69) (21.52) (22.25)

DHFR-folate -10.28 1.43 -286.41 -113.14 310.80
(1.06) (76.82) (7.50) (6.20)

penicillopepsin-pepstatin analogue -12.98 2.38 -479.21 -138.53 553.07
(1.93) (26.19) (17.59) (7.07)

a For TotalScore, individual contributions have not been fit to experimental ∆Gbind. For QMScore, individual contributions have been
fit to experimental ∆Gbind. SD is the standard deviation of the calculated from the experimental ∆Gbind. b ∆HI, ∆LJ6. ∆∆Gsolv is used for
complexes with the best proton affinity (PA). See Results and Discussion. c The standard deviation is in parentheses.
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while ICM had no correlation with experimental pIC50
values. These results suggest that QMScore can be used
to calculate binding affinity with a standard devia-
tion of less than one binding affinity unit even when
the X-ray structures of the ligand-protein com-
plexes are not available. Such a prediction model can
be used to search for leads in a database or for lead
optimization stages of any high-throughput docking
experiment.

Comparison with Other Scoring Functions. We
also compared the performance of QMScore with other
scoring functions available in the literature. We used
the data compiled by Wang et al. for the assessment of
empirical and knowledge-based scoring functions.28

They have compared scoring functions for 100 protein-
ligand complexes from the PDB. However, out of the
100 complexes, only 57 were suitable for scoring and
comparison with the performance for the 11 scoring
functions (see database preparation section in Methods).
We compared the performance of QMScore with other
scoring functions for this set of 57 protein-ligand
complexes. Figure 6 shows the correlation between
experimental ∆Gbind and QMScore. TotalScore has not
been fit to the experimental binding free energies and

correlates with binding affinity with an R2 of 0.48. When
different components are fit to the experimental ∆Gbind,
the R2 is 0.53 (QMScore). In Figure 6 we have compared
the R2 for different empirical and knowledge-based
scoring functions, and QMScore outperforms all other
scoring functions for this set. LigScore, GScore, and
DrugScore are second to QMScore with lower R2 values
(R2 ) 0.45). Interestingly, DrugScore is a knowledge-
based potential, while GScore is an empirical potential
that has been fit to discriminate between native and
decoy binding modes.

Electronic Interaction Energy and Binding Free
Energy. In our calculations we used the heat of
interaction to model the electrostatic interaction be-
tween the protein and ligand, and while the heat of
interaction is a more physically based description of the
interaction, we find that the electronic part of interac-
tion correlates highly with experimental ∆Gbind. In
Figure 7a we have plotted the electronic interaction
energy (in keV) with the experimental binding free
energy for 16 serine protease inhibitors. The R2 between
the electronic interaction energy and the experimental
∆Gbind is 0.88. There is one outlier, and if it is removed,
the R2 increases to 0.92. The R2 for QMScore for the
same set is 0.77 (Table 1). For 60 MMP inhibitors
docked in the active site of MMP-3, the electronic
interaction energy correlates with experiment with an
R2 of 0.57 and 0.66 without one outlier (Figure 7b). R2

for the QMScore model for the same set is 0.6 as
reported in the previous section. It is encouraging to find
that the electronic interaction energy by itself is able
to determine binding trends with reasonable accuracy.
Finally, for the set of 57 protein-ligand complexes from
Wang et al.’s set, the electronic interaction energy
correlates with binding affinity with an R2 of 0.46
(Figure 6).

Since the electronic interaction energy is not fit to any
empirical observations, we see it as a physically based
score that can be used to understand the effect of
different preparatory schemes and methods on binding
free energy prediction. For example, we tested the effect
of geometry optimization of the entire protein-ligand
complex using the AMBER molecular mechanics force
field on the prediction of binding affinity. Interestingly,
optimization of the protein-ligand geometry with the
AMBER force field marginally improved the agreement
with the experimental ∆Gbind. This only marginal
improvement (R2 of 0.462 for AM1 and 0.463 for PM3)
emphasizes the importance of experimental geometries
for the protein-ligand complex and the limitation of
GAFF to describe the geometry of the ligand and its
interactions with the protein. Indeed, in related data
sets where different ligands were bound to one protein
target, electronic interaction energy is as good a de-
scriptor of the binding free energy as the more detailed
QMScore model that takes into account all contributions
toward binding. Since the electronic interaction energy
is not fit to any experimental information, we believe
this score reflects electrostatic interactions between the
ligand and the protein in the active site. Regardless,
using the interaction energy exclusively ignores impor-
tant effects such as solvation and conformational en-
tropy and, hence, is likely to fail in cases where this is
important.

Figure 4. (a) Calculated versus experimental pKi for 33
inhibitors minimized in the active site of the crystal structure
of L-689,502 inhibited HIV-1 protease. Coordinates of the
protein and the inhibitors are provided by Holloway.70 The
square of the correlation coefficient is 0.58 with a standard
deviation of 0.94 pKi units. (b) Calculated pIC50 versus
experimental pIC50 for 60 inhibitors docked to matrix metal-
loprotease 3 protein (PDB code 1hy7). The square of the
correlation coefficient (R2) is 0.6 with a standard deviation of
0.47 pIC50 units.
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Figure 5. (Continued on next page)

Predicting Binding Affinity and Binding Mode Journal of Medicinal Chemistry, 2005, Vol. 48, No. 14 4567



Molecular Recognition Model. We have used the
molecular recognition model (MRM) with reduced AM-
BER atomtypes and CM2 charges to design a scoring
function for binding free energy prediction that takes
into account only the intermolecular interactions be-
tween the protein and the ligand (see Methods). Polar-
ization and charge-transfer effects are captured in the

atomic point charges derived from the solute electron
density. The main feature of MRM is the softened
interaction potential and atom-based solvation that
makes it pairwise additive in nature and easy to
implement. Softened potentials have been shown in
docking simulations to smooth out the binding free
energy surface, to enhance sampling, and to identify

Figure 5. Ribbon diagram of matrix metalloprotease 3 (MMP3) stromelysin (PDB code 1HY7) with bound ligand (purple). The
histadine residues coordinating the zinc atom are shown in yellow. Zinc atoms are colored magenta, and calcium atoms are colored
red. Experimental and calculated pIC50 for 60 inhibitors docked in the active site of MMP3 with the docking program ICM. Data
are from Jacobsson et al.36
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known ligands in virtual screening.63,80 We find this
softened potential to reliably predict experimental bind-
ing affinity within the set of HIV-1 protease inhibitors

that we tested. This set comprised 33 inhibitors mini-
mized in the active site of HIV-1 protease70 that were
also scored with QMScore, as described above. The
catalytic water molecule (water 407) seen in the X-ray
crystal structure was considered as a part of the ligand,
and these inhibitors were scored using MRM with
solvated CM2 charges calculated using the AM1 Hamil-
tonian. We fit the dispersion-repulsion, electrostatic,
and solvation components of MRM to the experimental
pKi and obtain an R2 of 0.78 and an rmsd of 0.67 pKi
units (Figure 8). The R2 for MRM scores without fitting
components to the experimental pKi values is 0.72. This
is a very good agreement considering that MRM is
essentially a molecular mechanics based scoring scheme
that only calculates intermolecular interactions between
the ligand and the protein.

To assess the impact of polarization and charge-
transfer effects on calculated pKi, we used fixed AMBER
point charges for the protein atoms in all 33 protein-
ligand complexes. CM2 charges were used for the ligand
and the catalytic water 407, calculated using the AM1

Figure 6. Comparison of QMScore with other scoring functions for predicting binding affinity for a set of 56 protein-ligand
complexes from Wang et al.’s data set. The letters correspond to the following: (A) QMScore; (B) TotalScore; (C) PM3 electronic
interaction energy for geometry optimized PL complexes; (D) AM1 electronic interaction energy for geometry optimized PL
complexes; (E) AM1 electronic interaction energy for only hydrogen geometry optimized PL complexes; (F) LigScore; (G) Gscore;
(H) DrugScore; (I) PMF; (J) Xscore; (K) PLP; (L) Dscore; (M) LUDI; (N) ChemScore; (O) Fscore; (P) Autodock.

Figure 7. (a) Electronic interaction energy versus experi-
mental ∆Gbind for a set of 16 serine protease inhibitors. R2 for
this set is 0.88. (b) Electronic interaction energy versus
experimental pIC50 for a set of 60 inhibitors docked to MMP3
(PDB code 1hy7). R2 for this set without one outlier (in circle)
is 0.66.

Figure 8. Performance of the molecular recognition model
for a set of 33 inhibitors minimized in the active site of HIV-1
protease. The R2 for this set is 0.78 with an SD of 0.65 pKi

units between experimental and calculated pKi.
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Hamiltonian. We find that the total MRM score that is
not fit to the experimental pKi values in this case is 0.69,
which is slightly lower than the R2 of 0.72 when
polarization and charge transfer is included in the CM2
charges. However, when different components are fit to
the experimental pKi values, the R2 is 0.81 with an SD
of 0.63 kcal/mol. The decrease in R2 for MRM-total in
the second case highlights the importance of the polar-
ization and charge transfer in protein-ligand interac-
tions; however, at least in this case there is only a
modest decrease in the agreement with experimental
pKi values. Moreover, the deficiency of using a fixed
charge model can apparently be overcome by using MLR
to fit the components of MRM to experimental pKi
values. Although fitting to experimental data leads to
the dependence of coefficients or weights on the experi-
mental data set, there is always an issue of transfer-
ability of the coefficients derived using MLR for new
situations.

Discussion of soft-core potentials is incomplete with-
out addressing the dependence of the quality of agree-
ment between the MRM scores and experimental pKi
values on the soft-core constant. In Figure S1 of the
Supporting Information, the square of the correlation
coefficient between experimental pKi values and raw
MRM (MRM-total) scores, and experimental pKi values
and MRM-fit scores, against the soft-core constants both
for the dispersion-repulsion interaction (δDR) and for
the electrostatic interaction (δES) is plotted. Starting
with a δES of 1.75 Å, the value of δDR was scanned in
order to locate the value where the agreement between
the calculated pKi and the experimental pKi was the
best.

For MRM-total, the best agreement between experi-
mental pKi values and MRM-total (R2 maxima) is at a
value of 1.9Å for δDR, whereas for MRM-fit the R2

maxima spans a range of 1.0-1.5Å for δDR. Using a
value of 1.9 Å for δDR, δES was scanned for the best
agreement between calculated and experimental pKi
values. It was found that the best agreement corre-
sponds to a value of 1.65 Å for δES. Therefore, softening
potentials impact binding free energy prediction. Soft-
ening potentials also implicitly account for receptor and
ligand flexibility and have been used successfully in
protein-protein81 and protein-ligand docking.82 It is
quite possible to tune soft-core constants for different
protein targets in order to maximize accuracy of predic-
tion.

Discriminating Native from Decoys. The perfor-
mance of any scoring function can be assessed by its
ability to predict the binding affinity when the experi-
mental binding mode is available. However, docking
programs also use scoring functions to predict the
binding modes of ligands for which atomic information
obtained through X-ray crystallography or nuclear
magnetic resonance is unavailable. A scoring function
that can accurately predict the binding affinity as well
as the binding mode is highly desirable in structure-
based drug design. The ability of any scoring function
to predict binding modes is tested by whether it can
discriminate between the native binding mode obtained
from either X-ray crystallography (as in this study) or
NMR and from “decoy poses” generated by the in silico
sampling of conformational space.

In this study, we tested our QM-based-method’s
ability to discriminate between native and decoy poses
for 20 protein targets with bound ligands. The decoy
poses and the targets were obtained from the study of
Wang et al.,28 and this data set allowed us to compare
our method with available empirical and knowledge-
based scoring functions in terms of its ability to detect
decoy poses from the experimental “pose”. The success
of any scoring function in predicting the correct binding
mode can be judged by the following set of criteria: (a)
A physically based scoring function will describe a
funnel-shaped binding free energy surface, where poses
that are conformationally distant from the native bind-
ing mode will have poorer scores compared to those that
are closer to the native. (b) Ideally the native binding
mode (determined by X-ray crystallography in this case)
is the global minimum on the free energy surface and
will rank first among a set of decoys. (c) The root-mean-
squared deviation (rmsd) from the native pose of the
top-scoring poses will be small. We tested the first
criterion by calculating the correlation coefficient (R)
between the scores and the rmsd for 20 protein-ligand
complexes, using TotalScore and 11 other scoring func-
tions. The average R for the set of 20 protein-ligand
complexes for TotalScore1 is 0.58, which is second only
to XScore (an empirical scoring function developed by
Wang et al. and specifically parametrized against this
set). TotalScore1 here is the unweighted sum of all the
parts of the master equation, while in TotalScore2 the
weight of the gas-phase electrostatic interaction is
doubled in order to investigate the importance of
electrostatic interactions in binding. The average cor-
relation coefficient for TotalScore2 increases to 0.59,
thus highlighting the importance of electrostatics
(Figure 9).

Another criterion for the success of any scoring
function is its ability to rank the native pose as the best
pose. Native poses in most cases is an X-ray crystal
structure, which is thought of as the global minimum
energy conformation of the ligand in the active site of
the protein. In Table 2 we have listed the rank of the

Figure 9. Comparison of QMScore with other scoring func-
tions for ability to discriminate between native and decoy poses
for 50 protein-ligand complexes. R is correlation coefficient
between score and rmsd of the pose from the native binding
mode. The letters correspond to the following: (A) TotalScore1
is the sum of all contributions; (B) TotalScore2 has electrostatic
interaction weighted twice as much as other contributions; (C)
Autodock; (D) ChemScore; (E) DrugScore; (F) Dscore; (G)
Fscore; (H) Gscore; (I) LigScore; (J) LUDI; (K) PLP; (L) PMF;
(M) XSCORE.
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native binding mode based on TotalScore for the 20
protein-ligand complexes that we studied. For 14 of the
20 complexes the native rank is in the top 5 with
TotalScore1, and 16 of 20 complexes rank in the top 5
for TotalScore2. The average rank of the native pose is
4 and 3 for TotalScore1 and TotalScore2, respectively.

The absolute rank of the native pose is a very
stringent criterion for success because it is possible that
the native binding mode is the average conformation of
an ensemble population of binding modes in the active
site. Hence, we also report the rmsd of the best scoring
pose for the 20 complexes. If the native binding mode
is representative of a population of conformationally
similar binding modes, then the rmsd for the best
scoring pose should not be very large when compared
with that for the native structure. The average rmsd
for the best-ranked pose from the native pose is 3.76
for TotalScore1 and 1.92 for TotalScore2. For further
insight, we also report the average rmsd of the 5 top
ranking poses using TotalScore1 and TotalScore2, which
is 3.94 and 3.38, respectively. The importance of specific
electrostatic interactions is shown to be very important
in TotalScore2 where doubling the weight of the elec-
trostatic interaction results in better discrimination of
native or native-like poses from decoys. This effect is
more pronounced in some complexes such as human
plasminogen kringle 4 and ε-aminocaproic acid complex
(PDB code 2PK4) and the neuraminidase inhibitor
complex (PDB code 2QWD). In the ε-aminocaproic acid
complex, R increases from 0.004 to 0.46, and in the
neuraminidase inhibitor complex, R increases from 0.67
to 0.8 when we double the electrostatic interaction
weight.

To emphasize the importance of electrostatics in
recognition, Figure 10 shows the ability of the gas-phase
electrostatic part of TotalScore or heat of interaction
(∆HI) to discriminate between the native and decoy
poses for these two complexes. The key hydrogen-

bonding and salt-bridge interactions between the ligand
and the protein are critical in the native binding pose
for the ε-aminocaproic acid and neuraminidase inhibi-
tor. Loss of these interactions presumably in the decoy
structures leads to loss of specific electrostatic interac-
tions that define the native binding mode. The ∆HI is
successful in capturing these interactions and by itself
is capable of discriminating native from decoys. For
ε-aminocaproic acid, ∆HI scores the native binding mode
as the best pose, whereas in case of the neuraminidase
inhibitor, the best pose has a 0.93 Å rmsd from the
native structure. This pose is conformationally very
close to the native binding mode and is involved in all
the key hydrogen bond and salt-bridge interactions with
the protein.

The ability to discriminate native poses from decoy
poses implies that the scoring function can capture the
salient features of the binding free energy surface of a
protein-ligand complex and can distinguish between
false or local minima and true global minima. Our
conclusions from these results can be interpreted in light
of the funnel theory of protein folding and protein-
ligand interaction.83,84 The search for the binding site
on the protein surface can be thought of as a phenom-
enon, which is driven by macroscopic or long-range
effects such as solvent entropy and electrostatic desol-

Table 2. Performance of TotalScore in Discriminating Native
from “Decoy Poses” for 20 Protein-Ligand Complexesa

TotalScore1 TotalScore2

PDB
code

native
rank

rmsd
best rank

av
rmsdb

native
rank

rmsd
best rank

av
rmsdb

1abf 3 0.29 5.91 2 0.29 5.91
1apt 1 0.00 1.70 1 0.00 3.37
1bbz 5 14.03 6.06 1 0.00 5.14
1bhf 1 0.00 2.38 1 0.00 4.80
1bra 2 0.66 0.74 1 0.00 0.61
1cla 7 7.66 4.90 3 7.66 4.00
1drf 16 6.09 5.40 13 7.57 5.59
1fkb 1 0.00 0.99 1 0.00 1.22
1hvr 1 0.00 3.05 1 0.00 3.09
1mnc 9 7.92 5.85 1 0.00 2.00
1ppc 5 8.69 7.53 1 0.00 5.36
2pk4 1 0.00 7.18 1 0.00 4.28
2qwd 7 0.93 3.63 6 0.93 1.35
3cla 4 2.35 7.55 2 2.35 7.25
3fx2 1 0.00 1.87 1 0.00 1.62
3ptb 3 1.87 1.38 2 1.87 1.38
5cna 5 3.40 3.26 1 0.00 2.75
5sga 5 8.02 4.71 1 0.00 2.77
7est 3 3.53 2.74 1 0.00 2.18
1tni 8 5.20 3.92 10 15.19 5.45

a TotalScore1 is the raw score calculated as the sum of all
contributions. In TotalScore2 the weight of the electrostatic
interaction is doubled. b Average rmsd is the average root-mean-
squared deviation of the top five scoring poses.

Figure 10. (a) Heat of interaction (∆HI) in kcal/mol versus
root-mean-squared deviation in angstroms between native and
decoy poses for ε-aminocaproic acid-human plasminogen
kringle 3 complex. (b) Heat of interaction (∆HI) in kcal/mol
versus root-mean-squared deviation in angstroms between
native and decoy poses for the neuraminidase inhibitor
complex.
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vation. The exclusion of water from the active site
during protein-ligand interaction approximated by
surface area burial during binding can coarsely dis-
criminate native-like ligands from decoy poses. How-
ever, regiospecific electrostatic and steric interactions
in the active site between the ligand and protein can
fine-tune the final discrimination of the protein for a
specific ligand. This is observed in our studies as well.

Charge Analysis. QM calculations on protein-
ligand complexes provide us with an opportunity to
study the distribution of formal charges on the amino
acid residues in the protein. In nonpolarizable force
fields the formal charges are assigned a constant value
on the basis of the physiological pH. For example, Asp
and Glu are modeled as acidic residues with -1 charge,
whereas Lys and Arg are modeled as basic residues with
a +1 formal charge. All other residues are modeled as
neutral residues with 0 formal charge. The N and C
termini residues are assigned +1 and -1 formal charges.
However, it is well-known that the electron density is
perturbed in response to the environment as well as in
response to the solvent reaction field. Hence, point
charges on similar atom types depend on the environ-
ment they are in. These point charges can be influenced
by the protein (core) and the solvent (surface) environ-
ment and thus lead to a distribution of formal charges
on amino acid residues that are different from force field
assigned charges.

We analyzed the formal charges on all 20 amino acid
residues in the 165 proteins for which we calculated the
solute wave function using the semiempirical Hamilto-
nian AM1 and the PB/SCRF method. These amino acids
were divided into core, boundary, and surface residues
based on the percentage of surface area exposed. Surface
areas were calculated with the SASA program55 using
a solvent probe radius of 1.4 Å. The core residues were
0-35% exposed to solvent, boundary residues were 35-
75% exposed to solvent, and surface residues were 75-
100% exposed to solvent. The charged N and C termini
and amino acids were removed from this analysis. The
results of this analysis are reported in Table SIV of the
Supporting Information. For hydrophobic residues such
as valine, leucine, isoleucine, etc., the number of exposed
residues on the surface was not statistically significant
for such an analysis. Hence, in those cases we have
reported the distribution just for the core and boundary
residues. For acidic residues such as aspartates and
glutamates, we find the average charge to be dependent
on their location in the protein. For example, the
average charge on the Asp in the core of the protein is
-0.93 (SD ) 0.04) while surface residues are closer to
-1.0. Similarly for Glu, the average charge on the
residues found in the core is -0.94 (SD ) 0.06), whereas
on the surface the average charge is -1.033 (SD ) 0.2).
For basic residues such as Lys the average charge on
core residues is 0.97 (SD ) 0.03), while surface residues
have an average charge of 0.98 (SD ) 0.02). Arg shows
similar trends where the average charge increases from
0.95 to 0.99 from core to the surface of the protein. The
standard deviation of the charges from the average
value in general is higher for residues found in the core
of the protein than for those found on the surface. This
highlights the importance polarization in the hetero-
geneous protein environment.

In general, the standard deviation from the average
formal charge for the surface residues is lower when
compared to that for core residues. This is likely due to
the homogeneous solvent environment around exposed
residues, although it should be kept in mind that there
is a distinct possibility of charge transfer between the
surface residues and explicit solvent if it is accounted
for in such calculations.20,86 Other interesting trends can
be noted from this analysis. For example, on average,
Pro, His, Met, Asp, Glu, Ser, Thr, and Tyr residues have
slightly negative formal charges at the core, boundary,
and surface regions of the protein. However, the stan-
dard deviations from the average charges in all these
cases are greater in magnitude from the average itself,
implying formal charges on these residues are highly
dependent on the environment they are in. Hydrophobic
residues such as Phe, Ala, Leu, Ile, and Val have slightly
positive formal charges in core regions of the protein,
while in boundary regions they have slightly negative
or positive formal charges (surface residues for these
amino acids were not present in statistically significant
numbers). The standard deviations in all these cases
point toward a significant spread of the formal charges
in different environments in proteins.

In our previous work we have shown the importance
of charge transfer (CT) in biomolecular interactions.20,86

We have also demonstrated CT in protein-ligand
interaction during zinc-mediated ligand binding in
metalloenzymes.22 In this study we undertook a global
analysis of CM2 CT in protein-ligand interactions. The
charge transferred between the protein and the ligand
for the 165 noncovalent protein-ligand complexes from
our validation set was analyzed. The results are plotted
in Figure S2 in Supporting Information as a frequency
distribution for protein-ligand complexes in a specific
CT bin. The positive CT bins consist of protein-ligand
complexes in which charge is transferred from the
ligand to the protein, whereas negative CT bins consist
of complexes in which charge is transferred from the
protein to the ligand. The frequency distribution of
protein-ligand complexes reveals that 24% of complexes
lie in the CT bin of -0.01 to 0.01 electrons. For the rest,
greater than 0.01 electrons are being transferred either
from the ligand to the protein or from the protein to
the ligand. Notably, 61% of the proteins transfer charge
to the ligand, whereas 39% of ligands transfer charge
to the protein. A statistically significant number of
ligands (11%) transfer greater than 0.1 electron to the
protein, whereas a less significant number of proteins
(4%) transfer greater than 0.1 electron to the ligand.
For CT from the protein to the ligand, there is more of
a spread among different CT bins resembling a normal
distribution, whereas CT from ligand to the protein is
dominated by 12% of complexes in the 0.0-0.01 bin and
11% of the complexes in the greater than 0.1 bin. We
have listed CT for Mulliken, CM1, and CM2 charges for
all 165 complexes in Table SI of Supporting Information.

We also analyzed charge transfer in 40 metalloen-
zymes such as human carbonic anhydrase II (HCAII),
carboxypeptidase (CPA), and matrix metalloproteases
(MMP) in this study. The metal atoms in these protein-
ligand complexes were treated as a part of the protein.
Compared to noncovalent complexes, not surprisingly,
there is more charge transferred between proteins and
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the bound ligands in metalloenzymes. In HCAII the
average CM2 CT is -1.01 electron (SD ) 0.15 e-). In
CPA the average CT is -0.62 electron (SD ) 0.09 e-),
and in MMP the average CT is 0.44 electron (SD ) 0.38
e-). Interestingly, in MMPs, charge is being transferred
from the ligand to the protein, whereas in HCAII and
CPA it being transferred from the protein to the ligands.
Mulliken, CM1, and CM2 CT for the 40 metalloproteins
is listed in Table SII of Supporting Information.

Overall, these observations demonstrate the chal-
lenges faced by nonpolarizable fixed-point charge models
that are routinely used to model protein-ligand inter-
action. Importantly, the amount of CT is variable in
magnitude and direction, which makes it very important
to include it in a scoring model because it may make a
difference in whether a compound is flagged as inactive
or active and whether CT (and polarization) is accounted
for correctly. The transfer of charge between the ligand
and protein and the dependence of formal charges on
the environment can alter the nature of the electrostatic
interaction between the ligand and the protein, and
hence, fixed-point charge models represent a relatively
severe approximation.

Conclusions

In this work we report the development of the first-
generation quantum mechanics based scoring function
for predicting the binding affinity and binding mode of
protein-ligand complexes. Our approach to calculating
binding free energy is promising and shows inherent
predictive capability. We have shown this approach to
be successful in capturing binding free energy trends
in a diverse set of protein-ligand complexes without
having to fit different contributions to the experimental
observations. There are precious few studies in the
literature that assess performance of binding free
energy prediction on a diverse data set that are not fit
to or derived from experiments. However, we note that
using QMScore, predictive models can be constructed
for different protein families by fitting our scoring
function to experimental binding free energies. We have
shown the predictive power of such models in calculat-
ing the binding free energy from an experimental
structure solved by X-ray crystallography and also from
poses that have been docked in the active site using a
docking program. Understandably, within protein fami-
lies the agreement we observe with experiment is better.
In fact, in structure-based virtual design the predictive
capability of a scoring function within protein families
is of more practical value than across protein families.

In the second part of this study, we demonstrated the
ability of this quantum mechanics based scoring func-
tion to discriminate between native and decoy poses.
Although the size of this data set is not large in our
study (because of computational time considerations),
the general trend points toward the ability of this
scoring function to discriminate between native and
decoy poses. We further demonstrate the importance of
electrostatics in discrimination, especially in polar
protein-ligand complexes. When the weight of the
electrostatic interaction is doubled, the discriminatory
power of the scoring function increases. Our results are
in agreement with other studies in the literature87-90

that underline the importance of electrostatic interac-

tions in determining the specificity of the binding mode
and, hence, in discriminating native from decoy poses.

In this work we have also demonstrated that the
power of quantum mechanics can be extended to a
detailed study of protein-ligand interactions with rela-
tively modest computational resources. For an average
size protein-ligand complex, our linear scaling D&C
program can calculate the gas-phase and solvated wave
function in 4 h on a 1.8 GHz AMD Athlon machine with
a 1 GB RAM. We envision such calculations to be
routinely used in the near future because of the advent
of new algorithms and technologies and the falling cost
of computer hardware. The advantage of using QM
Hamiltonians is that they obviate the need to determine
atom types in different chemical environments, tradi-
tionally used in scoring functions. And also effects such
as polarization and charge transfer, especially between
metal ions and betweem the protein and the ligand, are
better captured. These effects are not pairwise additive
and are beyond the scope of classical potentials. This
study sets the stage for large-scale application of
quantum mechanics to problems of biological interest.

In terms of performance and predictive ability, there
is certainly scope for further improvement in the scoring
scheme and the Hamiltonians themselves. Although our
quantum mechanics based scoring function outperforms
other scoring functions in the literature, we realize that
the agreement with experiments for both binding af-
finity and binding mode leaves a lot to be desired.
Uncertainties in structure determination43 as well as
in experimental measurements91 can be one cause of
poor performance. The role of electrostatics and its
effects on pKa values of ionizable groups in the active
site has been ignored in this study as well as other
scoring functions in the literature. Ionizable groups in
the active site with perturbed pKa values can have a
significant effect on the interaction energy.92 Scoring
functions also ignore the role of water molecules during
binding in validation studies from X-ray crystallo-
graphic structures. The microscopic interactions of
solvent with the protein and ligand can influence the
strength of the interaction and should be taken into
consideration in scoring. This is especially important
when water forms hydrogen bond networks within the
active site in protein-ligand complexes.93

The assumption of one dominant binding mode of the
ligand (X-ray crystal mode or a docking pose) in these
calculations is a poor assumption.94,95 In the case of
docking, use of simplistic potentials for determination
of the binding mode may itself be a source of uncer-
tainty. A simple potential might misrepresent the
binding free energy surface, but sampling with physi-
cally based potentials is presently computationally
intractable, and it is also not clear if they would lead to
convergent solutions in every case. These are some of
the vexing problems associated with finding the correct
binding mode for a ligand in the active site. In our future
work we hope to address these issues and to improve
the predictive power of our scoring function. Indeed, we
envision that an accurate quantum mechanics based
scoring function will be routinely used to determine the
binding free energy of small molecules bound to diverse
protein targets. This will prove to be a significant
development in the field of scoring and will be used as
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a powerful tool in the process of lead optimization, a
critical and challenging part of drug discovery.
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